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Neutral curves and stability boundaries in stratified flow 

By LOUIS N. HOWARD 
Mathematics Department, Massachusetts Institutc of Technology 

(Received 29 January 1963) 

An example is presented which shows that the boundary of stability in an 
antisymmetric stratified shear flow is not necessarily marked by steady neutral 
waves with c = 0. The stability characteristics of stratified shear flow in the 
neighbourhood of the neutral curve are also discussed. 

1. Introduction 
This note is intended as a supplementary comment on a recent paper by Miles 

(1963). Professor Miles has suggested to me that an example I constructed last 
summer may be of some general interest. This example seems to be the simplest 
one illustrating the fact that the ‘principle of exchange of stabilities’ is not 
necessarily true for antisymmetric stratified shear flow, and also helps to clarify 
the physical mechanism which in some cases leads to the violation of this prin- 
ciple. This example is presented and discussed in 8 2. 

I also take this opportunity to present, in $ 3 ,  a generalization, to the case of 
stratified flow, of the well-known perturbation for the unstable waves adjacent 
to the neutral solution corresponding to the inflexion point, in homogeneous 
parallel inviscid flow (cf. Lin 1955). This gives a way of finding some aspects of 
the stability of stratified flow near the neutral curve which seems to be rather 
more direct than the methods used in Miles’s paper (1963) and does not appear to 
require the analyticity of the velocity and density profiles. On the other hand, 
Miles’s methods give a more detailed picture of the instability, and seem more 
suitable for studying higher approximations. 

2. Example 
In  this note, as in Miles (1963), the ‘Boussinesq approximation’ of neglect of 

the inertial effects of density stratification is used. The stability equation then 
becomes (cf. Miles 1961): 

[( u - C)2F’]’ - a2( u - C)2F + q p  = 0, (1) 
where U = U(y) is the basic parallel flow, the stream function of the perturbation 
is ( U  - c )  F ( y )  eia(x-ct) and B(y) = --p’/p is the static stability. If  U is odd and /3 
is even, this equation is unchanged if c is replaced by - c and P(y)  by P( - y). 
We suppose that the boundaries, if any (on which the boundary conditions P = 0 
areimposed), are also symmetrically disposed with respect toy = 0. The equation 
is also unchanged if c is replaced by its complex conjugate C and F by F .  Thus an 
eigenfunction with c = c, + ic i  must be accompanied by eigenfunctions with 
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c = k c, k i c i ,  the two ambiguous signs being independent, though only the 
solutions with ci 0 are actually relevant to the solution of an initial-value 
problem, or as limits for viscosity approaching zero. In  particular, a singular 
neutral mode, i.e. a solution with ci = 0 which is a limit of unstable solutions, 
must have c = 0 (‘principle of exchange of stabilities’) if it  is unique; similarly 
one might expect an unstable wave to have cpure imaginary. Physically speaking, 
the symmetry (or antisymmetry) means that neither left nor right is preferred 
as a direction of propagation of the wave, so the wave must stand still-unless 
‘it’ is actually two waves with opposite directions of propagation thus restoring the 
symmetry without requiring c = 0 or c pure imaginary. The purpose of the present 
example is to show that this second possibility can really occur, even with mono- 
tonic density and velocity profiles. 

i.e. essentially a pair of Kelvin-Helmholtz shear layers. Within the intervals of 
continuity of the profiles, the stability equation reduces to F“ - a2F = 0;  the 
boundary conditions are F(  & co) = 0, and the jump conditions a t  ? 1, derived 
for example by the usual considerations of continuity of pressure, etc., are: 
F continuous, A[( U - c ) ~  F‘] + gF = 0,  A standing for the jump in crossing the 
interface in the positive sense. The velocity and length scales having been chosen 
already in a dimensionless way in writing down (2), the parameter g should be 
thought of as an overall Richardson number, rather than the gravitational 
acceleration. By using the boundary and jump conditions, the eigenfunctioii 

(3) 

(4) 

i = A e-&/+l)+Bedv-1) ( -  1 < y < 1) 
5 ( A  e-Za + B )  e-a(u-l) (1 < y), 

where A [  - 1 + g / a -  2c-  2c2] +Be+ [ - 1 + g / a  - 2c] = 0 
and A e-za [ - 1 + g / a  + Sc] +B[ - 1 +g/cr+ 3c -2~21 = 0. 

The eigenvalue relation is obtained by insuring that the two equations ( 4 )  are 
consistent; setting h = g la -  1 and a2 = 1 -e--4a it  can be written 

[2c2 - h]2 - 4c2a2 = (1  - a2) h2. ( 5 )  

The temptation to solve this as a quadratic in c2 should be resisted, and (5) 
rewritten as 

[2~2--h-a2]2 = (a2+h)2-a2h2 = (a?+h-ah) (aZ+h+ah). (6) 

Let R2, = g(az+h-ah) and RE = g(uz+h+ah). Then (6) becomes 

( C ~ - - R ~ - R ~ ) ~  = 4R;R;, or [ c ~ - ( R ~ + R ~ ) ~ ] [ c Z - ( R ~ - R ~ ) ~ ]  = 0. 

From this we see that the four roots of (5) are all given by 

c = R,+R,, (7 )  
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where R: = $(az+h-ah) ,  Ri = $(a2+h+ah), the two independent ambiguous 
signs implied in the definitions of R, and R, giving the four roots. The stability 
characteristics are now easily read off. Since a < 1, it is clear that both R: and 
Rg are positive when 

h > -a"( 1 +a,), 
Rg < 0 and R: > 0 when 

- a z / ( l - a )  < h < - a z / ( l + a ) ,  

and both are negative when h < - az/(  1 - a). Returning to the original variables 
we have : 
(a) Stability, with four real roots if 

( b )  Instability, with two pairs of conjugate complex (not pure imaginary) 
roots if 

(c) Instability, with two pairs of conjugate pure imaginary roots if 

(this last case can occur with 9 > 0 only if 

a: < a:, = 210g4(45+ 1) 0.1203). 

Thus the stability boundary is 

e - 4 ~  + ( 1  - ,-a,)+ s=- 
Q! 1 + ( 1  - e - 4 ~ ) *  

and is not a locus of c = 0; on this neutral curve we have in fact 

c = f aZ[Za(l +a)]-*.  

There are waves with c = 0; this occurs (cf. (7) )  for two of the four modes when 
R2, = Ri, i.e. when h = 0 or g l a  = 1 .  This locus, however, lies entirely inside the 
stable region and is not adjacent to unstable waves, though it does become 
tangent to the stability boundary (8) as CL + 0,  reflecting the general fact that for 
long waves any shear layer resembles a Kelvin-Helmholtz discontinuous shear 
flow (cf. Drazin & Howard 1961). These stability characteristics are shown 
graphically in figure 1. t  

In  simple examples like this one it is not difficult to solve the problem com- 
pletely, but with smoother (and thus perhaps physically more reasonable) 
profiles, such complete solutions are generally only obtainable by rather exten- 
sive numerical calculations. In  such cases it is thus natural to attempt to find 

t Professor J. Holmboe informed me during his recent visit to M.I.T. that he also has 
studied this example as well as some other similar ones, in preparation for some meteoro- 
logical investigations. Another interesting example can be found in Holmboe (1962). 
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only the boundary of stability, and when U is odd and /3 even this has been done 
in several cases by assuming that this stability boundary is a neutral curve with 
c = 0; in fortunate cases neutral solutions with c = 0 can be found analytically, 
more or less by inspection, and in any case the numerical calculation of the locus 
in the Richardson-number-wave-number plane corresponding to neutral waves 
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FIGURE 1. Stability characteristics of stratified shear flow. 

with c = 0 is much easier than a complete calculation. The present example, 
however, serves as a warning that in some cases neutral curves found in this way 
may not be stability boundaries; if in the present case we had assumed the 
validity of the principle of exchange of stabilities and looked only for neutral 
waves with c = 0, we should have erroneously concluded that the stability 
boundary was g = a. This example was in fact constructed in an attempt to 
understand an example with smooth profiles ( U  = Iy[*(l+@sgny, p = aly(a-1 for 
1yI < 1; U = sgny, /3 = 0 for IyI > 1, a > 1) communicated to me by Miles, in 
which a neutral curve with c = 0 could be obtained. However, i t  lay partially 
inside a region known to  be definitely stable from the general theorem which 
assures stability if g/3-$Ulz > 0 (cf. Miles 1961 and Howard 1961), and con- 
sequently could not be the stability boundary. While this example of Miles has 
not been analysed completely, it  seems safe to conclude that its neutral curvewith 
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c = 0 is analogous to g = a in the present example, and that the true stability 
boundary marks the onset of a pair of waves which are travelling, as well as 
growing. One should not expect a model with discontinuous profiles to be satis- 
factory when perturbations of short wavelength (compared to the natural length 
scale of the smooth profiles being modelled) are considered, but physical intui- 
tion as well as experience with the use of discontinuous profiles in other stability 
problems (cf. Drazin & Howard 1963) suggest that a reasonable resemblance with 
regard to  stability characteristics may be anticipated for small a, at least when 
the effect of boundaries is negligible. 

Some physical insight into the reasons for the occurrence of instability with 
c not pure imaginary can be obtained by examining the eigenfunction in more 
detail in the case of large a. Large a is a favourable case for such physical inter- 
pretation because then the disturbance is localized near the two interfaces 
(cf. ( 3 ) )  and it becomes possible to regard the flow as two weakly coupled Kelvin- 
Helmholtz flows; the instability can then be regarded as arising more or less 
locally at each of the interfaces. An ordinary Kelvin-Helmholtz instability of 
wave-number a first arises (on the ‘Boussinesq’ model, with = 6) when g/a is 
decreased to half the square of the velocity difference across the interface, and 
the disturbance propagates at the average of the velocities on the two sides. Thus 
for large a we should expect one mode localized near the upper interface with 
c = 4 on the stability boundary g i a  = 4, and another localized near y = - 1,  with 

as the stability boundary, and on it, since a g 1, we have c = f 4. With c = + 3 
and g ia  = 3, the first of the equations ( 4 )  gives A [  - 31 + B e-2a [ - 31 2 = 0, or 
A = -$Be-2a. Thus P(1) = B[1 -$ec4a], P( - 1 )  = B$e-2a, and P(1) > P( - 1) .  
Similarly we find P( 1 )  < F( - 1 )  when c = - 8, thus verifying the interpretation 
of the two waves as being essentially ordinary instabilities on the separate inter- 
faces. When a is not large, this interpretation cannot be taken so literally because 
the interaction of the two interfaces is more pronounced, but the same physical 
picture seems more or less appropriate, and one should be conscious at least of 
the possibility that c = 0 does not give the stability boundary whenever an 
antisymmetric flow is built up out of two reasonably separated shear layers. 

c =--La nd the same stability boundary. In fact, for large a (8) does give g/a = 4 

3. Perturbation about the neutral curve 
The examples of Drazin and Holmboe (cf. Miles 1961) are illustrations of cases 

in which i t  has been possible to find closed-form solutions of the stability 
equation by choice of special values of c (in these cases, zero). When this is 
possible, one obtains neutral solutions, which may be presumed to correspond 
to the stability boundary. The example of 5 2,  however, emphasizes that this is 
a presumption which should if possible be tested by examining the stability 
characteristics near the neutral curve, though it is true that neither Drazin’s 
nor Holmboe’s example seems at all likely, on the basis of the physical inter- 
pretation of the travelling disturbance of § 3, to have c + 0 on the stability boun- 
dary, and in both cases the presumed interval of instability does reduce to the 
known results for Richardson number + 0. Miles (1963) shows how (in the 
analytic case) the behaviour near the neutral curve can be determined; but it 

22 Fluid Mech. 16 
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seems desirable to obtain a more or less explicit formula analogous to the one 
obtained by Lin (1955) in the constant-density case which enables one to compute 
aclaa2 at the neutral point, once the neutral solution is known. While perhaps not 
entirely satisfactory from the point of view of mathematical rigour, the following 
derivation (which is related to the method used by Lin), leads quite directly to 
such a formula. 

In  attempting to generalize Lin's result it  is important to employ the proper 
dependent variable. This is in fact already clear in the homogeneous case where 
the variable used is the stream-function q3; this, rather than, say, F ( = q3/( U - c ) ) ,  
is the variable which does not become singular at the critical point as neutral 
stability is approached, because the singularity at U = c in the coefficient 
- v"/( U - c) occurring in the equation for q3 is cancelled by the zero in U". The 
situation is made simpler in the homogeneous case by the fact that the value of 
c at the neutral point is known to be cs = C& = U(ys), where UN(yS) = 0. In  the 
stratified case, we may take c = U, at the neutral point but ys then is not neces- 
sarily the inflexion point; it  must itself be determined along with the neutral 
eigenfunction. That this is to be expected can be seen, for instance, from the 
equation for the stream-function q3, which (with neglect of inertial effects of 

u stratification) is 

u-c (U-C)2 (9) 

If c is real, we have a singularity in Ulfl(U - c) unless U" = 0 where U = c, but 
the stratification term unavoidably introduces an even stronger singularity; in 
fact in the stratified case @ does acquire some singular behaviour as neutral 
stability is approached, as can be anticipated in the analytic case by noting 
(cf. Miles 1961, 1963) that the exponents at the singularity at U = c are + & (4 - A),, J ,  being the value of the Richardson number 9/31 UI2 at the point 
where U = c. In  the analytic case Miles (1961) has pointed out that in the limit 
of neutral stability (i.e. for a 'singular neutral mode') the eigensolution becomes 
the solution associated with one of these exponents, or rather a certain definite 
branch of it. In  the non-analytic case the analogue of this appears to be that the 
stream-function for a singular neutral mode is of the form q3 = ( U  --c)lpn H 
where n is a certain number between 0 and 1 (to be specified presently), the branch 
of ( U  - c)1-n is one which is continuous as c approaches the real axis from above, 
and H is smooth at ye. This can be made plausible by showing (plausibly) the 
existence of such a smooth H ,  for a suitable value of n, as follows: the equation 
for H is (Howard 1961) 

HI' + 3( 1 - n) U' W-lH' - [a2 + nU" W-l+ {n( 1 - n) U f 2  - g/3> W-2] H = 0 
( U - c  = W ) .  (10) 

Suppose c is real and in the range of U .  Then usually no solution of (10) will be 
smooth at ye, but if n is chosen so that n( 1 - n) U t 2  - g/3 = 0 at yc there will be one 
solution which is, and i t  will have Hi = &( 1 -n)-l [nU:/Ui - J 3  H,, where the 
subscript c denotes evaluation at yc and J ( y )  = g/31U'2 is the local Richardson 
number. A real value of n between 0 and 1 (actually two of them) with the above 
property can be found if J ,  < t, which is anyway necessary for a singular neutral 
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mode (Miles 1961) and we may suppose c restricted so that this is the case. The 
smooth H found in this way will probably not satisfy the two boundary con- 
ditions, but by suitably adjusting the values of c and a they can presumably be 
satisfied, if a singular neutral mode exists at all. 

These observations, together with the known results for the analytic case, 
appear to justify the hypothesis that as neutral stability is approached through 
positive values of ci = Imc it is the variable H (with n determined as above) 
which approaches continuously the smooth (real) value of H (=  H,) correspond- 
ing to the singular neutral mode. We proceed to derive the perturbation formula 
on this basis, supposing that we have a neutral solution H, with c = c,, a = a,, 
and g (or some over-all Richardson number) fixed; n( 1 - n) = Jc, = 4. We shall 
think of this neutral solution as being approached by varying a, g being fixed, 
and c -f c, with ci > 0. Now it is an immediate consequence of (9) that the func- 
tional (suppose ct > 0) 

I = I ( c ,  Q )  = - {qY2 + [ U“W-l- g/W-2] Q2) dy +- s” q52dy l: 111 

(11)  

is stationary with respect to variations of q5 which vanish at the endpoints, 
provided q5 is a solution of (9) and zero a t  the boundaries. (Note that in (1 1) we 
have q52, not Iq5I 2; the problem for complex c is not Hermitian, but is self-adjoint 
in the ordinary real sense and so can be related to a variational, though not mini- 
mal, problem.) Let c = c (a )  be the eigenvalue and q5 = the eigenfunction 
corresponding to a (real) wave-number a. Then the variation in I { C ( ~ ) , $ ~ }  
produced by a small variation in a is, to first order, entirely due to the consequent 
variation in c(a), and not at all to the variation of Qa; since I{c(a), QE} = a2 we 
have 

2a = c‘(a) [El 
c = c ( a ) ,  $=$e. 

Calculating aI/ac, the following formula for ~ ’ ( a )  results (c = c(a) and q5 
are hereafter understood) : 

c’(a) = 2 a l  Q2dy +- 1 [ - U”W-2 + 2gpW-3] q52dy. (13) 

This holds for ci > 0. Now let a! --f a!,, G .+ c,; in doing so it is essential to take 
account not only of the singularities explicitly present in (13), but also of the 
singularity in q5. This is brought into explicit form by replacing $ by the variable 
H = Wn-14 introduced above, with n( 1 - n) = J ,  understood, so that as CL + a,, 
H -+ H,, a smooth real-valued function which is supposed to be known (note 
that the limit of q5 = Wl-%H is in general neither smooth nor real, because the 
branch of ( U - c,)l-” is to be the limit for c -+ c, from above of a branch of ( U - c ) ~ - ~  
continuous on [yl, y2] for ci > 0); (13) is replaced by 

~ ’ ( c L , )  = lim 2a W2(l-n)H2dy -+ [ - U”W-2n + 2g/3W-1-2n] H2dy. (14) Jg: Jg: 
For definiteness, suppose that 

and ( U-cS)-2n = e+2nni ]U-csJ-2n if U < cy; 

(U-cs)-2n = IU-cSl-2fl if U > c, 

28-2 
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this is easily seen to be the limiting result of defining ( U - c)-2n by taking 

-n < arg(U-'c) < o for ci > 0. 

Since n lies between 0 and 1, the limiting value of the numerator of the right-hand 
side of (14) is obtained simply by replacing c by c, and H by H,, using the above 
definition of ( U  - c , ) - ~ ~ ;  the determination of the limit of the denominator 
requires a little more investigation, since formal substitution of c, for c produces 
a divergent integral. This minor difficulty can be overcome by integrating by 
parts. Evidently it is only the neighbourhood of the point (or points) at which 
U = c, that need special treatment; if Ui ;$. 0 it is convenient to use U as an in- 
dependent variable on some interval [a,b] about ys short enough that UL $. 0 
on it. Evidently the limit of the integral over any segment on which U $. c, can 
be obtained simply by replacing c by c,. (If U: = 0, a different change of variable 
is required, but a similar procedure may be used; if there are several points at 
which U = c,, surround each by an interval [a, b] and consider them one by one.) 
For the interval [a, 61 we have: 

(a)  I fP  < 0, 
lim j':f(y) w-l-pc~y = f(y) ( u - cs)-l-p dy. 

This is obvious if p 6 - 1,  and easily shown also for p < 0 ,  when the improper 
integral converges. 

( b )  If p = 0, we have the well-known result 

the last integral being the Cauchy principal value. 

(c)  I fP > 0, 

if 0 < p < 1, the limit of the last integral can be obtained by (a); if p = 1 by (b ) ;  
if p > 1 a sufficient number of additional integrations by parts reduces the pro- 
blem to either case (a) or (6). By use of these results the limit of the denominator 
of (14), and so c'(a,), can be obtained. The formula can be given a particularly 
neat form in the case of odd monotonic increasing U and even p, with (supposing 
the phenomenon illustrated by the example of 0 2 does not occur) cs = 0. In  this 
case H 2  is even and ( U  - c,)-~" = U-2" for y > 0 and (U - CJ-~" = e2nni 1 U (  -2n 

for y < 0. Thus 

and 
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(this improper integral converges for n < 1 because U"(0) = 0). Finally 

Ordinarily one would take the first term to be zero, since H ( y z )  = 0; but in cer- 
tain examples, for instance Drazin's, U'(yz)  = 0 also and this may produce 
divergence a t  the upper limit in the integral, which is compensated by the first 
term. This is a minor technical point caused by the fact that the variable U used 
implicitly in the integration by parts is inconvenient at the upper limit though 
appropriate near zero; the difficulty is readily overcome by taking the upper 
limit < yz ,  retaining the first term above, and then evaluating the limit of the 
sum of both terms as the upper limit -+ yz .  If P/U' does not become infinite at 
yz  this difficulty cannot occur; we now assume this, keeping the full formula (15) 
available for the exceptional case. We then obtain 

As an example we may take Holmboe's case, which Miles (1963) has studied: 
U = tanh y ,  gp = Jaech2 y ,  y2 = 00. One finds u,(l -a,) = J ,  n = a, and 
H, = seehas y. (16) then gives, after a little elementary calculation, 

which can easily be shown to agree with Miles's results. It should be recalled that 
c'(as) is the derivative with g (or in dimensionless form with some over-all 
Richardson number J )  held constant, and so should perhaps better be denoted 
by (ac/aa) J. This is not so useful as (ac/aJ>, near the point of maximum J on the 
neutral curve. But if the neutral curve is given by J = d(a ) ,  say, we have 

a(c,a) ww - - aJ -1 
= 

- a(c, J )  a(J ,a)  - (::)J [(%)d ' 

Since the neutral curve is c = 0 (in cases like Holmboe's; otherwise we may make 
the same argument with ci replacing c) (aJ/aa), = J:(a) on it, and thus we have 

combining this with (17) one finds for Holmboe's example, after a little trans- 
formation: 

In  Drazin's case, U = tanh y ,  gp = J ( = const.), n = a2; applying these for- 
mulas (using the full form of (15) and letting yz  + 00 to evaluate the denominator 
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of (14) as mentioned above) I obtained the following results applicable on the 
neutral curve J = a2( 1 - az): 

It is interesting to observe that these results, like the equation for the neutral 
curve, are exactly the same as in Holmboe's example except that a is everywhere 
replaced by az. 

This work was partially supported by the Office of Naval Research. 

REFERENCES 

DRAZIN, P. G. & HOWARD, L. N. 1961 Stability in a continuously stratified fluid. J .  

DRAZIN, P. G. & HOWARD, L. N. 1962 The instability to long waves of unbounded 

HOLMBOE, J. 1962 On the behaviour of symmetric waves in stratified shear layers. 

HOWARD, L. N. 1961 Note on a paper of John W. Miles. J .  PZuid Mech. 10, 509. 
LIN, C. C. 1955 The Theory of Hydrodynamic Stability. Cambridge University Press. 
MILES, J. W. 1961 On the stability of heterogeneous shear flows. J .  Fluid Mech. 10,496. 
MILES, J .  W. 1963 On the stability of heterogeneous shear flows, Part 2. J .  PZuid 

Engng Mech. Div., Amer. SOC. Civil Engra, 87, 101. 

parallel inviscid flow. J .  Pluid Mech. 14, 257. 

Ceofysiske Publikasjoner, Ceophysica Norvegica, 24, no. 2. 

Mech. 16, 209. 


